![]() Polyurethane urea elastic yarn having improved dyeability and manufacturing method therefor
专利摘要:
The present disclosure relates to a polyurethane urea elastic yarn having improved dyeability and a method for manufacturing the same. Through a process of forming a prepolymer by mixing polyethylene glycol to polyol and then adding diisocyanate thereto in a step of preparing the prepolymer during manufacturing of a polyurethane urea elastic yarn, accessibility of an acid dye is enhanced by improving hydrophilicity of the polyurethane urea elastic yarn, and as a result, dyeability of the polyurethane urea elastic yarn may be enhanced, and an advantage of dye color deepening of a fabric obtained by knitting nylon and the polyurethane urea elastic yarn may be expected as well. 公开号:EP3696301A1 申请号:EP18894556.2 申请日:2018-09-21 公开日:2020-08-19 发明作者:Tae Heon Kim;Ho Young Jeong;Yeon Soo Kang 申请人:Hyosung Tnc Corp; IPC主号:D01F6-00
专利说明:
[0001] The present disclosure relates to a polyurethane urea elastic yarn having improved dyeability and a method for manufacturing the same, and in particular, to a polyurethane urea elastic yarn having improved dyeability for an acid dye and a method for manufacturing the same. Background Art [0002] A polyurethane fiber having elastic properties has been widely used in the textile industry. A 'spandex' fiber is used as a general term meaning such an elastic fiber, and generally refers to a synthetic fiber in which a polyurethane bond is 85 % or more in the structure forming the fiber. [0003] Such a polyurethane fiber is generally prepared by a polymerization reaction first of reacting a polyol, such as a high molecular weight diol compound with an excess diisocyanate compound to obtain a prepolymer having an isocyanate group on both ends of the polyol, and a polymerization reaction second of dissolving the prepolymer in a proper solvent and then adding a diamine-based or diol-based chain extender to the solution for reacting. [0004] A polyurethane fiber may be used in combination with various other fibers such as acryl, wool, cotton and silk, and have been generally used for purposes requiring elasticity such as underwear, swimwear and stockings. [0005] Due to such unique properties having elasticity, a polyurethane fiber has been actively used in various applications, and as the application expands, new additional properties have been continuously required for existing polyurethane fibers. A number of polyurethane fibers having more enhanced heat resistance and resilience have been developed so far, and demands for polyurethane fibers having high thermosetting properties and polyurethane fibers having enhanced dyeability are also gradually increasing. [0006] A polyurethane fiber generally has a problem of poor dyeability, and general technologies for enhancing dyeability for an acid dye include 1) a method of introducing a tertiary nitrogen atom into a polyurethane polymer chain (Japanese Patent Publication No. S62-23097 B ), 2) a method of introducing a salt of an organic acid or inorganic acid and a tertiary amine to a polyurethane polymer chain (Japanese Patent Publication No. S50-17520 B ), 3) introducing a tertiary or quaternary nitrogen atom to an end of a polyurethane polymer chain (Japanese Patent Publication No. S44-16386 B ), 4) a method of using a low molecular diamine as a chain extender (Japanese Patent Application Laid-Open Publication No. S59-108021 A ), and the like. [0007] However, gelation readily occurs in the reaction in the above methods 1) and 2), and the method 3) has a problem in that the amount of the introduced nitrogen atom is difficult to control. In addition, the method 4) of using a low molecular diamine as a chain extender may enhance dyeability, but has a problem of decreasing softness and elasticity. [0008] In addition thereto, Korean Patent Application Laid-Open Publication Nos. 10-2009-0118997 A and 10-2005-0070652 A have tried to improve dyeability by dyeing with a specific blue acid dye containing a polymer having a maleimide structure formed with a maleimide unit or adding a talc compound, respectively, however, there is a limit to sufficiently enhance dyeability of polyurethane. Disclosure Technical Problem [0009] The present disclosure is directed to providing a polyurethane urea elastic yarn having improved dyeability for an acid dye, and a method for manufacturing the same. Technical Solution [0010] In view of the above, a polyurethane urea elastic yarn having improved dyeability for a dye according to one embodiment of the present disclosure is obtained by reacting,(a) a polyol including a first polyol and a second polyol; (b) at least one of diisocyanates; (c) at least one of diamine chain extenders; and (d) at least one of amine chain terminators, wherein the second polyol is polyethylene glycol, and the first polyol and the second polyol are materials different from each other. [0011] In addition, the second polyol is mixed in 5.0 mol% to 20.0 mol% with respect to the total amount of polyol. [0012] In addition, the polyurethane urea elastic yarn has an amine-terminated number of 20.0 meq/kg to 45.0 meq/kg. [0013] A method for manufacturing a polyurethane urea elastic yarn having improved dyeability according to the present disclosure includes, (a) preparing a polyurethane prepolymer by bringing a polyol including a first polyol and a second polyol into contact with at least one of diisocyanates; (b) adding a solvent to the prepolymer in the step (a); (c) bringing the product in the step (b) into contact with at least one of diamine chain extenders and at least one of amine chain terminators; and (d) preparing a polyurethane urea elastic yarn by spinning the product in the step (c), wherein the second polyol is polyethylene glycol, and the first polyol and the second polyol are materials different from each other. [0014] In addition, the second polyol is mixed in 5.0 mol% to 20.0 mol% with respect to the total amount of polyol. [0015] In addition, the polyurethane urea elastic yarn has an amine-terminated number of 20.0 meq/kg to 45.0 meq/kg. [0016] A fabric according to the present disclosure is a fabric having enhanced dyeability for an acid dye by knitting the polyurethane urea elastic yarn according to one embodiment of the present disclosure and nylon. Advantageous Effects [0017] By mixing polyethylene glycol in a step of preparing a polyurethane prepolymer, accessibility of an acid dye to a polyurethane urea elastic yarn is enhanced by enhancing hydrophilicity of the polyurethane urea elastic yarn, and as a result, dyeability of the polyurethane urea elastic yarn for the acid dye can be enhanced, and an advantage of dye color deepening of a fabric obtained by knitting the polyurethane urea elastic yarn of the present disclosure with nylon can be expected as well. Mode for Disclosure [0018] Hereinafter, the present disclosure will be described in detail. [0019] The present disclosure relates to a polyurethane urea elastic yarn having improved dyeability, the polyurethane urea elastic yarn including a product obtained by reacting (a) a polyol including a first polyol and a second polyol; (b) at least one of diisocyanates; (c) at least one of diamine chain extenders; and (d) at least one of amine chain terminators, wherein the second polyol is polyethylene glycol, and the first polyol and the second polyol are materials different from each other. [0020] In addition, the present disclosure relates to a method for manufacturing a polyurethane urea elastic yarn having improved dyeability, the method including (a) preparing a polyurethane prepolymer by bringing a polyol including a first polyol and a second polyol into contact with at least one of diisocyanates; (b) adding a solvent to the prepolymer in the step (a); (c) bringing the product in the step (b) into contact with at least one of diamine chain extenders and at least one of amine chain terminators; and (d) preparing a polyurethane urea elastic yarn by spinning the product in the step (c), wherein the second polyol is polyethylene glycol, and the first polyol and the second polyol are materials different from each other. [0021] In the present disclosure, the polyol includes a first polyol and a second polyol. In other words, a first polyol and a second polyol are mixed to be used as the polyol, and the first polyol and the second polyol are materials different from each other. [0022] In the present disclosure, polytetramethylene ether glycol, polypropylene glycol, polycarbonatediol and the like may be used as the first polyol. [0023] In the present disclosure, the second polyol is polyethylene glycol. Polyethylene glycol has excellent hydrophilicity, and therefore, hydrophilicity of the polyurethane urea elastic yarn is enhanced by mixing the polyethylene glycol in the step of preparing a polyurethane prepolymer, which resultantly enhances accessibility of an acid dye to the polyurethane urea elastic yarn, and dyeability of the polyurethane urea elastic yarn for the acid dye may be enhanced. [0024] In the present disclosure, the polyethylene glycol is preferably mixed in 5.0 mol% to 20.0 mol% with respect to the total amount of polyol. When using the polyethylene glycol in less than 5.0 mol%, enhancement of dyeability for an acid dye may not be expected, and using the polyethylene glycol in greater than 20.0 mol% may cause serious decline in the properties of the elastic yarn and a decrease in the process applicability. [0025] In the present disclosure, 4,4'-diphenylmethane diisocyanate, hexamethylene diisocyanate, toluene diisocyanate, butylene diisocyanate, hydrogenated p,p-methylene diisocyanate and the like may be used as the diisocyanate, and one or more compounds thereof may be used. [0026] The polyol and the diisocyanate are brought into contact with each other to prepare a polyurethane prepolymer, and a solvent is added thereto. Herein, the solvent is preferably dimethylacetamide. After that, the result is brought into contact with at least one of chain extenders and at least one of chain terminators to prepare a polyurethane urea solution. The prepared polyurethane urea solution, a product, goes through a fiber spinning process such as dry spinning or melt spinning to prepare the polyurethane urea elastic yarn. [0027] In the present disclosure, the chain extender is at least one of diamines. Examples of the usable diamine include hydrazine, ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, 1,2-butanediamine (1,2-diaminobutane), 1,3-butanediamine (1,3-diaminobutane), 1,4-butanediamine (1,4-diaminobutane), 1,3-diamino-2,2-dimethylbutane, 4,4'-methylenebis-cyclohexylamine, 1-amino-3,3,5-trimethyl-5-aminomethylcyclohexane, 1,6-hexanediamine, 2,2-dimethyl-1,3-diaminopropane, 2,4-diamino-1-methylcyclohexane, N-methylaminobis(3-propylamine), 2-methyl-1,5-pentanediamine, 1,5-diaminopentane, 1,4-cyclohexanediamine, 1,3-diamino-4-methylcyclohexane, 1,3-cyclohexane-diamine, 1,1-methylene-bis(4,4'-diaminohexane), 3-aminomethyl-3,5,5-trimethylcyclohexane, 1,3-pentanediamine (1,3-diaminopentane), m-xylylenediamine and mixtures thereof, but are not limited thereto. Ethylenediamine is preferred as the chain extender. [0028] In the present disclosure, the chain terminator is at least one of amines. Examples of the usable amine may include diethylamine, cyclohexylamine, n-hexylamine and mixtures thereof, but are not limited thereto. Diethylamine is preferred as the chain terminator. [0029] In the polyurethane urea elastic yarn of the present disclosure, the yarn preferably has an amine-terminated number of 20.0 meq/kg to 45.0 meq/kg. The amine end of the yarn serves as a dyeing site bondable to a dye, and when the yarn has an amine-terminated number of less than 20.0 meq/kg, a sufficient dyeability enhancing effect may not be expected due to the lack of dyeing sites. In addition, when the yarn has an amine-terminated number of greater than 45.0 meq/kg, dyeability is sufficient, however, the amine-terminated number excessively increases, which may cause a serious problem in storage stability of a polymer. [0030] In addition, in order to prevent discoloration and property decline of the polyurethane urea caused by ultraviolet rays, atmospheric smog, a heat treatment process associated with spandex processing, and the like, a sterically-hindered phenol-based compound, a benzofuranone-based compound, a semicarbazide-based compound, a benzotriazole-based compound, a polymeric tertiary amine stabilizer and the like may be properly combined and added to the spinning solution in the present disclosure. In addition to the above-mentioned components, pigments or dyes with a blue color, a complementary color of a yellow color, may be added to the spandex fiber of the present disclosure to reduce yellowishness of the yarn. [0031] Furthermore, the polyurethane urea elastic yarn of the present disclosure may include additives such as titanium dioxide or magnesium stearate in addition to the above-described components. [0032] The polyurethane urea elastic yarn of the present disclosure may be knitted with nylon to prepare a fabric, and such a knitted fabric has an excellent dye color deepening effect by having improved dyeability for an acid dye. [0033] Hereinafter, the present disclosure will be specifically described with reference to examples, however, the following examples and experimental examples are just illustrating one embodiment of the present disclosure, and the scope of the present disclosure is not limited to the following examples and experimental examples. Example 1 [0034] To 33.8 kg of polytetramethylene ether glycol (PTMG, molecular weight 1800), 5.0 mol% of polyethylene glycol (molecular weight 2000) was mixed, and after adding 8.8 kg of 4,4'-diphenylmethane diisocyanate thereto, the result was reacted while stirring for 120 minutes at 90 ºC in a nitrogen gas stream to prepare a polyurethane prepolymer having isocyanate on both terminals. The prepolymer was cooled to room temperature, and 66.1 kg of dimethylacetamide was added thereto as a solvent to obtain a polyurethane prepolymer solution. [0035] Subsequently, 1.1 kg of ethylenediamine as a chain extender and 0.1 kg of diethylamine as a chain terminator were dissolved in 15.6 kg of dimethylacetamide, and the result was added to the prepolymer solution at 10 ºC or lower to obtain a polyurethane urea solution in which the polyurethane urea solution solid has an amine-terminated number of 63 meq/kg. [0036] In addition, 1.5 weight% of triethylene glycol-bis-3-(3-tertiary-butyl-4-hydroxyphenyl)propionate as an antioxidant, 4 weight% of hydrotalcite (Mg4Al2(OH)12CO3•3H2O) coated with 1 weight% of melamine polyphosphate as an inorganic chlorine resistance agent, and 0.5 weight% of titanium dioxide as a light resistance agent were mixed to the polyurethane urea solution to prepare a polyurethane urea spinning solution. [0037] The spinning solution obtained as above was spun at a rate of 900 m/min by dry spinning to manufacture a polyurethane urea elastic yarn with 40 denier, 3 filaments, and a yarn amine-terminated number of 33 meq/kg. Example 2 [0038] In the process of preparing the prepolymer of Example 1, 10.0 mol% of polyethylene glycol (molecular weight 2000) was mixed to 32.0 kg of polytetramethylene ether glycol (PTMG, molecular weight 1800), and after adding 8.7 kg of 4,4'-diphenylmethane diisocyanate thereto, the result was reacted while stirring for 120 minutes at 90 ºC in a nitrogen gas stream to prepare a polyurethane prepolymer having isocyanate on both terminals. The preparation process after that was the same as in Example 1. Example 3 [0039] In the process of preparing the prepolymer of Example 1, 20.0 mol% of polyethylene glycol (molecular weight 2000) was mixed to 28.2 kg of polytetramethylene ether glycol (PTMG, molecular weight 1800), and after adding 8.7 kg of 4,4'-diphenylmethane diisocyanate thereto, the result was reacted while stirring for 120 minutes at 90 ºC in a nitrogen gas stream to prepare a polyurethane prepolymer having isocyanate on both terminals. The preparation process after that was the same as in Example 1. Comparative Example 1 [0040] A polyurethane urea elastic yarn was prepared in the same manner as in the preparation process of Example 1 except that polyethylene glycol was not mixed in the step of preparing a prepolymer. Comparative Example 2 [0041] In the process of preparing the prepolymer of Example 1, 4.0 mol% of polyethylene glycol (molecular weight 2000) was mixed to 34.2 kg of polytetramethylene ether glycol (PTMG, molecular weight 1800), and after adding 8.8 kg of 4,4'-diphenylmethane diisocyanate thereto, the result was reacted while stirring for 120 minutes at 90 ºC in a nitrogen gas stream to prepare a polyurethane prepolymer having isocyanate on both terminals. The preparation process after that was the same as in Example 1. Comparative Example 3 [0042] In the process of preparing the prepolymer of Example 1, 21.0 mol% of polyethylene glycol (molecular weight 2000) was mixed to 27.8 kg of polytetramethylene ether glycol (PTMG, molecular weight 1800), and after adding 8.7 kg of 4,4'-diphenylmethane diisocyanate thereto, the result was reacted while stirring for 120 minutes at 90 ºC in a nitrogen gas stream to prepare a polyurethane prepolymer having isocyanate on both terminals. The preparation process after that was the same as in Example 1. Experimental Example [0043] Each of the spandex manufactured in the examples and the comparative examples was dyed with a black color acid dye, and the degree of dyeability (darkness) was measured as a brightness (L*) value after dyeing, and comparatively evaluated.The evaluation results are compared and shown in the following Table 1. [0044] Herein, the L* value, which is the degree of dyeability, was measured by measuring reflectivity of the yarn using a spectrophotometer, and the measured value was calculated using a calculation formula of the CIE Lab color difference formula. [Table 1] Polyethylene Glycol Content L* Value Modulus [g] Spinning Workability Example 1 5.0 mol% 34 7.6 Favorable Example 2 10.0 mol% 10 7.4 Favorable Example 3 20.0 mol% 6 7.0 Favorable Comparative Example 1 Not Added 76 8.1 Favorable Comparative Example 2 4.0 mol% 52 7.9 Favorable Comparative Example 3 21.0 mol% 5 6.6 Poor * L* value: in the L*a*b* color difference values, the L* value is a value representing brightness, and when dyeing with the same dye, a lower L* value is obtained as the color is darker. [0045] From the above-described experimental results, it was identified that significantly superior dyeability was obtained in the examples according to the present disclosure compared to in the comparative examples. In addition, it was identified that there was a critical significance for the amount of the polyethylene glycol used according to the present disclosure. [0046] Comparative Example 3 had problems in that modulus of the yarn decreased due to the excessive addition of polyethylene glycol, and the use in the process was difficult due to poor workability during the spinning. [0047] Comparative Example 2 had a problem in that the L* value of the yarn significantly increased due to the insufficient addition of polyethylene glycol, which leaded to poor dyeability.
权利要求:
Claims (8) [0001] A polyurethane urea elastic yarn having improved dyeability, the yarn comprising (a) a polyol including a first polyol and a second polyol; (b) at least one of diisocyanates; (c) at least one of diamine chain extenders; and (d) at least one of amine chain terminators,wherein the second polyol is polyethylene glycol; andthe first polyol and the second polyol are materials different from each other. [0002] The polyurethane urea elastic yarn having improved dyeability of Claim 1, wherein the second polyol is mixed in 5.0 mol% to 20.0 mol% with respect to the total amount of polyol. [0003] The polyurethane urea elastic yarn having improved dyeability of Claim 1, which has an amine-terminated number of 20.0 meq/kg to 45.0 meq/kg. [0004] A method for manufacturing a polyurethane urea elastic yarn having improved dyeability, the method comprising: (a) preparing a polyurethane prepolymer by bringing a polyol including a first polyol and a second polyol into contact with at least one of diisocyanates; (b) adding a solvent to the prepolymer in the step (a); (c) bringing the product in the step (b) into contact with at least one of diamine chain extenders and at least one of amine chain terminators; and (d) preparing a polyurethane urea elastic yarn by spinning the product in the step (c),wherein the second polyol is polyethylene glycol; andthe first polyol and the second polyol are materials different from each other. [0005] The method for manufacturing a polyurethane urea elastic yarn having improved dyeability of Claim 4, wherein the second polyol is mixed in 5.0 mol% to 20.0 mol% with respect to the total amount of polyol. [0006] The method for manufacturing a polyurethane urea elastic yarn having improved dyeability of Claim 4, wherein the polyurethane urea elastic yarn has an amine-terminated number of 20.0 meq/kg to 45.0 meq/kg. [0007] A fabric with enhanced dyeability for an acidic dye by knitting the polyurethane urea elastic yarn of any one of Claims 1 to 3 and nylon. [0008] A fabric with enhanced dyeability for an acidic dye by knitting the polyurethane urea elastic yarn manufactured using the method of any one of Claims 4 to 6 and nylon.
类似技术:
公开号 | 公开日 | 专利标题 JP6133254B2|2017-05-24|2 component spandex TWI238206B|2005-08-21|Polyurethane elastic fiber and preparation thereof, cloth and swimming suit DE60319717T2|2009-03-12|SPANDEXFIBER WITH ETHYLENEDIAMIN / 1,2-DIAMINOPROPAN AS CHAIN EXTENDER AND METHOD FOR THE PRODUCTION THEREOF KR0136854B1|1998-04-28|Fiber from polyether based spandex CN101107389B|2011-06-08|Dyeable spandex KR101367082B1|2014-02-24|Spandex having enhanced whiteness, and fabrics and garments comprising the same EP1951784B1|2013-02-27|Spandex from poly | glycols blended with polymeric glycols CN101469463B|2011-03-30|Preparation of polyether type high resilience spandex fibre and product produced thereby US20060135724A1|2006-06-22|Spandex having low heat-set temperature and materials for their production KR100598870B1|2006-07-10|High heat-resistant and good setting polyurethaneurea elastic fiber and method for preparation thereof JPH08511297A|1996-11-26|Spandex fibers made with low unsaturation polyols KR100942359B1|2010-02-12|Method for preparing polyurethaneurea elastic fiber with improved heat settability CN106592010B|2018-09-21|A kind of preparation method and applications of polyurethane elastomeric fiber WO1997000982A1|1997-01-09|Elastic polyurethane fibers and process for the production thereof CA2606283C|2013-07-16|Spandex compositons for high speed spinning JP5136943B2|2013-02-06|Polyurethane elastic yarn and method for producing the same US9441314B2|2016-09-13|Spandex from high molecular weight poly | glycols JP6094796B2|2017-03-15|Method for producing polyurethane elastic fiber KR20030085213A|2003-11-05|High chlorine and heat resistant spandex fiber and manufacturing method thereof CN102517688B|2014-04-16|Preparation method of polyurethane elastomeric fiber possessing excellent heat setting performance KR100835814B1|2008-06-09|Spandex Containing Quaternary Amine Additives EP1170407B1|2005-12-14|Elastic polyurethane-urea fiber and process for producing the same US9567694B2|2017-02-14|Elastic fabric comprising a polyurethane elastic fiber made from a polyether based polyol CN101724936B|2013-07-17|High heat and chlorine resistant polyurethaneurea elastic fiber and preparation of thereof US20060276610A1|2006-12-07|Spandex from poly|glycols having high ethyleneether content
同族专利:
公开号 | 公开日 JP2021509450A|2021-03-25| CN111344441A|2020-06-26| SG11202005055SA|2020-06-29| WO2019132182A1|2019-07-04| BR112020013008A2|2020-11-24| KR101959146B1|2019-03-15|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
法律状态:
2019-07-06| STAA| Information on the status of an ep patent application or granted ep patent|Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE | 2020-07-17| STAA| Information on the status of an ep patent application or granted ep patent|Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE | 2020-07-17| PUAI| Public reference made under article 153(3) epc to a published international application that has entered the european phase|Free format text: ORIGINAL CODE: 0009012 | 2020-08-19| 17P| Request for examination filed|Effective date: 20200514 | 2020-08-19| AX| Request for extension of the european patent|Extension state: BA ME | 2020-08-19| AK| Designated contracting states|Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR | 2021-04-07| DAV| Request for validation of the european patent (deleted)| 2021-04-07| DAX| Request for extension of the european patent (deleted)| 2021-08-18| RIC1| Information provided on ipc code assigned before grant|Ipc: D01F6/70 20060101AFI20210712BHEP Ipc: D01F1/10 20060101ALI20210712BHEP Ipc: D01D5/04 20060101ALI20210712BHEP Ipc: D04B1/18 20060101ALI20210712BHEP Ipc: C08G 18/12 20060101ALI20210712BHEP Ipc: C08G 18/48 20060101ALI20210712BHEP | 2021-08-18| A4| Supplementary search report drawn up and despatched|Effective date: 20210716 | 2022-01-20| GRAP| Despatch of communication of intention to grant a patent|Free format text: ORIGINAL CODE: EPIDOSNIGR1 | 2022-01-20| STAA| Information on the status of an ep patent application or granted ep patent|Free format text: STATUS: GRANT OF PATENT IS INTENDED | 2022-01-26| RIC1| Information provided on ipc code assigned before grant|Ipc: C08G 18/48 20060101ALI20211221BHEP Ipc: C08G 18/12 20060101ALI20211221BHEP Ipc: D04B1/18 20060101ALI20211221BHEP Ipc: D01D5/04 20060101ALI20211221BHEP Ipc: D01F1/10 20060101ALI20211221BHEP Ipc: D01F6/70 20060101AFI20211221BHEP | 2022-02-16| INTG| Intention to grant announced|Effective date: 20220121 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|